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Abstract— Network traffic analysis becomes more and more crucial in the IP network infrastructure as the amount of IP packets transmitted 

on the Internet at any given moment of time increases enormously. A thorough understanding of the IP traffic will help us better design our 

network topology and utilize bandwidth more effectively. From the perspective of security, it can also protect our system from attacks, such as 

intrusions, our model employs feature selection so that the binary classifier for each type of attack can be more accurate, which improves the 

detection of attacks that occur less frequently in the training data. Based on the accurate binary classifiers, our model applies a new ensemble 

approach which aggregates each binary classifier’s decisions for the same input and decides which class is most suitable for a given input. 

During this process, the potential bias of certain binary classifier could be alleviated by other binary classifiers’ decision. Our model also 

makes use of multi boosting for reducing both variance and bias. The clients have some rules to communicate between them using snort 

rules. Any Communications (such as FTP, SMTP, etc) between the clients are monitored by the snort. If it continues again, then that particular 

client will be disconnected from this network (means cannot be able to communicate with other clients in that network.) But, that client will be 

physically connected with the network. The proposed work describes a network traffic analysis software tool, which provides searching, 

visualization, and preprocessing functions with a user-friendly GUI implemented in Java language. Within the huge network traffic data 

collected, a user can identify any particular packets using various searching functions provided. Visualization presents the analyzed result in a 

different setting to further enhance the analysis. The GUI in Java allows the tool to be used in different platforms. This tool is tested and 

demonstrated through several real network datasets. 

 Index Terms—Algorithms, filtering algorithms, finite-state automata (FSA), mathematics, packet filters, packet processing, predicate 

optimization, protocol description languages (PDLs), run-time safety, snort rules and mining techniques. 

_________________________________________________________________________________________________________________ 

I. Introduction  

ACKET filters are a class of packet manipulation 
programs used to classify network traffic in 
accordance to a set of user-provided rules; they are a 

basic component of many networking applications  such as 
shapers, sniffers, demultiplexers, firewalls, and more. The 
modern networking scenario imposes many requirements 
on packet filters, mainly in terms of processing speed (to 
keep up with network line rates) and resource consumption 
(to run in constrained environments). Filtering techniques 
should also support modern protocol formats that often 
include cyclic or repeated structures (e.g., MPLS label 
stacks, IPv6 extension headers).  
 Finally, it is also crucial that filters preserve the integrity of 
their execution environment, both in terms of memory 
access safety and termination enforcement, especially when 
running as an operating system module or on the bare 

hardware. Although at first sight this aspect might not 
seem crucial, it is a fact that many of the limitations built 
into existing packet filters derive directly from safety 
issues. As an example, the impossibility of automatically 
proving termination for a generic computer program led 
the BPF [1] designers to generate acyclic filters only, thus 
preventing the parsing of packets with multiple levels of 
encapsulation or repeated field sequences. 
     Existing packet filters focus invariably on subsets of 
these issues but, to the best of our knowledge, do not solve 
all of them at the same time. As an example, two widely 
known generators, BPF [2] and PathFinder [3], do not 
support recursive encapsulation; NetVM-based filters [4], 
on the other hand, have no provision for enforcing 
termination, either in filtering code or in the underlying 
virtual machine. This paper presents Stateless Packet Filter 
(SPAF), a finite-state automata (FSA)-based technique to 
generate fast and safe packet filters that are also flexible 
enough to fully support most layer-2 to layer-4 protocols, 
including optional and variable headers and recursive 
encapsulation. The proposed technique specifically targets 
the lower layers of the protocol  stack and does not directly 
apply for deep packet inspection nor for stateful filtering in 
general. Moreover, for the purpose of this paper, we 
consider only static situations where on-the-fly rule set 
updates are not required. While these limitations exclude 
some interesting use cases, SPAF filters are nevertheless 
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useful for a large class of applications, such as monitoring 
and traffic trace filtering, and can serve as the initial stage 
for more complex tools such as intrusion detection systems 
and firewalls. 
     A stateless packet filter can be expressed as a set of 
predicates on packet fields, joined by boolean operators; 
often these predicates are not completely independent from 
one another, and the evaluation of the whole set can be 
short-circuited. One of the most important questions in 
designing generators for high-performance filters is 
therefore how to efficiently organize the predicate set to 
reduce the amount of processing required to come to a 
match/mismatch decision. By considering packet filtering 
as a regular language recognition problem and exploiting 
the related mathematical framework to express and 
organize predicates as finite-state automata, SPAF achieves 
by construction a reduction of the amount of redundancy 
along any execution path in the resulting program: Any 
packet field is examined at most once. This property 
emerges from the model, and it always holds even in cases 
that are hard to treat with conventional techniques, such as 
large-scale boolean composition. Moreover, thanks to their 
simple and regular structure, finite automata also double as 
an internal representation directly translatable into an 
optimized executable form without requiring a full-blown 
compiler. Finally, safety (both in terms of termination and 
memory access integrity) can be enforced with very low 
run-time overhead. 
     The rest of this paper  is structured as follows. Section II 
presents an overview of the main related filtering 
approaches developed to this date. Section III provides a 
brief introduction to the FSAs used for filter representation 
and describes the filter construction procedure. Section IV 
focuses on executable code generation and on enforcing the 
formal properties of interest, Finally, Section V reports 
conclusions and also highlights possible future 
developments. 

II. Related Work 

    Given their wide adoption and relatively long history, 
there is a large corpus of literature on packet filters. A first 
class of filters is based on the CFG paradigm; the best-
known and most widely employed one is probably BPF [1], 
the Berkeley Packet Filter. BPF filters are created from 
protocol  escriptions hardcoded in the generator and are 
translated into a bytecode listing for a simple, ad hoc virtual 
machine. The bytecode was originally interpreted, leading 
to a considerable run-time overhead impact that can be 
reduced by employing JIT techniques [5]. BPF disallows 
backward jumps in filters in order to ensure termination, 
thus forgoing support for, e.g., IPv6 extension headers; 
memory protection is enforced by checking each access at 
run-time. Multiple filter statements can be composed 

together by boolean operators, but in the original BPF 
implementation, only a small number of optimizations are 
performed over predicates, leading to run-time 
inefficiencies when dependent or repeated predicates are 
evaluated. Two relevant BPF extensions are BPF and xPF. 
BPF [2] adds local and global data-flow optimization 
algorithms that try to remove redundant operations by 
altering the CFG structure. xPF [6] relaxes control flow 
restrictions by allowing backward jumps in the filter CFG; 
termination is enforced by limiting the maximum number 
of executed instructions through a run-time watchdog built 
into the interpreter, but its overhead was not measured, 
and extending this approach to just-in-time code emission 
has not been proposed and might prove difficult.  
      Afurther CFG-based approach, unrelated to BPF, is 
described in [4]. Its main contribution is decoupling the 
protocol database from the filter generator by employing an 
XML-based protocol description language, NetPDL [7]. 
Filtering code is executed on the NetVM [8], a special-
purpose virtual machine targeting network applications 
that also provides an optimizing JIT compiler that works 
both on filter structure and low-level code. The 
introduction of a high-level description language 
reportedly does not cause any performance penalties; this 
approach, however, delegates all safety considerations to 
the VM and does not provide an effective way to compose 
multiple filters. In general, CFG-based generators benefit 
from their flexible structure that does not impose any 
significant restriction on predicate evaluation order; for the 
same reason, however, they are prone to the introduction of 
hard-to-detect redundancies, leading to multiple 
unnecessary evaluations if no further precautions are taken. 
Even when optimizers are employed and are 
experimentally shown to be useful, they work on an 
opportunistic basis and seldom provide any hard 
guarantees on the resulting code. 
      A second group of filter generators chooses tree-like 
structures to organize predicates. PathFinder [3] transforms 
predicates into template masks (atoms), ordered into 
decision trees. Atoms are then matched through a linear 
packet scan until a result is reached. Decision trees enable 
an optimization based on merging prefixes that are shared 
across multiple filters. PathFinder is shown to work well 
both in software and hardware implementations, but it 
does not take protocol database decoupling into 
consideration, and no solution to memory safety issues is 
proposed for the software implementation. FSA-based 
filters share a degree of similarity with PathFinder as 
packets are also scanned linearly from the beginning to the 
end, but predicate organization, filter composition, and 
safety considerations are handled differently. DPF [9] 
improves over PathFinder by generating machine code just-
in-time and adding low-level optimizations such as a 
flexible switch emission strategy. Moreover, DPF is capable 
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of aggregating bounds checks at the atom level by checking 
the availability of the highest memory offset to be read 
instead of considering each memory access in isolation; our 
technique, described in Section IV-E, acts similarly but 
considers the filter as a whole, thus further reducing run-
time overhead. While organizing predicates into regular 
structures makes it easier to spot redundancies and other 
sources of overhead, it also introduces different limitations. 
As an example, generators restricted to the aforementioned 
acyclic structures do not fully support tunneling or 
repeated protocol portions. Moreover, it has been noted 
that performing prefix coalescing is not sufficient to catch 
certain common patterns, resulting in redundant predicate 
evaluation [2]. 
     A third approach is to consider packet filtering as a 
language recognition problem. Jayaram et al. [10] use a 
pushdown automaton to perform packet demultiplexing; 
filters are expressed as LALR(1) grammars and can 
therefore be effectively composed using the appropriate 
rules. This solution improves filter scalability, but there are 
downsides related to the push-down automaton: A number 
of specific optimizations are required to achieve good 
performance. It is also quite unwieldy to express protocols 
and filter rules as formal grammars that must be kept 
strictly unambiguous: The authors marginally note that the 
simpler FSA model would be sufficient for the same task. 
     Apart from the specialized solutions for fast packet 
filtering mentioned, one of the most widely used packet 
filtering programs is the NetFilter framework.1 NetFilter is 
a component of the Linux kernel that performs packet 
filtering, firewalling, mangling operations (e.g., network 
address translation), and more, acting through a set of 
hooks and callbacks that intercept packets as they traverse 
the networking stack. In contrast with all the 
aforementioned approaches, NetFilter uses the relatively 
simple method of applying all the specified rules in 
sequence when performing packet filtering, leading to poor 
performance and scalability; moreover, it appears not 
possible to specify an arbitrary predicate, filters being 
limited to preset protocols and statements  that are 
specialized by specifying actual network addresses and 
ports. 
        Besides the generation technique, there have also been 
improvements along other dimensions such as architectural 
considerations, as demonstrated by xPF, FFPF [19], and 
nCap [20], or dynamic rule sets support, as shown by the 
SWIFT tool [21]. We consider these aspects out of scope for 
the purpose of this paper, being either orthogonal to the 
technique we present or the object of future works. 

Definition of Near-Duplicate 

 The central idea of near-duplicate spam detection 
is to exploit reported known spams to block subsequent 

ones which have similar content. For different forms of e-
mail representation, the definitions of similarity between 
two e-mails are diverse. Unlike most prior works 
representing e-mails based mainly on content text, we 
investigate representing each e-mail using an HTML tag 
sequence, which depicts the layout structure of e-mail, and 
look forward to more effectively capturing the near-
duplicate phenomenon of spams. 

Let I ¼ ft1; t2; . . . ; ti; . . . ; tn; <mytext=>;  <anchor>g be the 
set of all valid HTML tags with two types of newly created 
tags,  <mytext=> and <anchor>, included. An e-mail 
abstraction derived from procedure SAG is denoted as <e1; 
e2; . . . ; ei; . . . ; em>, which is an ordered list of tags, where 
ei 2 I. The definition of near duplicate is: “Two e-mail 
abstractions _ ¼ <a1; a2; . . . ; ai; . . . ; an> and _ ¼ <b1; b2; . . 
. ; bi; . . . ; bm> are viewed as near-duplicate if 8ai ¼ bi and 
n ¼ m.”  

The tag length of an e-mail abstraction is defined as the 
number of tags in an e-mail abstraction. 

 

 

The following sequence of operations is performed in the 
preprocessing step. 
1. Front and rear tags are excluded. 
2. Nonempty tags2 that have no corresponding start tags or 
end tags are deleted. Besides, mismatched nonempty tags 
are also deleted. 
3. All empty tags2 are regarded as the same and are 
replaced by the newly created <empty=> tag. 
Moreover, successive <empty=> tags are pruned and only 
one <empty=> tag is retained. 
4. The pairs of nonempty tags enclosing nothing are 
removed. 

 

Example for Mail  
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SYSTEM ARCHITECTURE 

 In the packet filtering process with the increasing 
popularity of electronic mail (or e-mail), several people and 
companies found   it an easy way to distribute a massive 
amount of unsolicited messages to a tremendous number of 
users at a very low cost. These unwanted bulk messages or 
junk emails are called spam messages. The majority of 
spam messages that has been reported recently are 
unsolicited commercials promoting services and products 
including sexual enhancers, cheap drugs and herbal 
supplements, health insurance, travel tickets, hotel 
reservations, and software products. They can also include 
offensive content such pornographic images and can be 
used as well for spreading rumors and other fraudulent 
advertisements such as make money fast.  

 

 

 As a result, spam has become an area of growing 
concern attracting the attention of many security 
researchers and practitioners. In addition to regulations and 
legislations, various anti-spam technical solutions have 
been proposed and deployed to combat this problem. 
Front-end filtering was the most common and easier way to 
reject or quarantine spam messages as early as possible at 
the receiving server. However most of the early anti-spam 
tools were static; for example using a blacklist of known 
spammers, a white list of good sources, or a fixed set of 
keywords to identify spam messages. Although these list-
based methods can substantially reduce the risk provided 
that lists are updated periodically, they fail to scale and to 
adapt to spammers’ tactics. 

Selective Packet Discarding 

Once the score is computed for a packet, selective 
packet discarding, and overload control can be performed 
using the score as the differentiating metric. Since an exact 
prioritization would require offline, multiple-pass 
operations, e.g., sorting and packet buffering, the following 
alternative approach is taken into account. First, the 
cumulative distribution function (CDF) of the scores of all 
incoming packets in time period (Ti) is maintained. Second, 
the cut-off threshold score is calculated. Third, the arriving 
packets in time period T (i+1) if its score value is below the 
cut-off threshold are discarded. At the same time, the 
packets arriving at T (i+1) create a new CDF. 
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Selective packet discarding 

 

 

Discarding SQL Slammer Worm attack packets 

 

III. Filter Generation Technique 

            In this section we describe about filtering 
techniques using snort rules and mining 
techniques. 

One of the key concepts in PacketScore is 
the notion of “Conditional Legitimate Probability” 
(CLP) based on Bayesian theorem. CLP indicates 
the likelihood of a packet being legitimate by 
comparing its attribute values with the values in 

the baseline profile. Packets are selectively 
discarded by comparing the CLP of each packet 
with a dynamic threshold. The concept of using a 
baseline profile with Bayesian theorem has been 
used previously in anomaly-based IDS (Intrusion 
Detection System) applications, where the goals are 
generally attack detection rather than real-time packet 
filtering.  
        In this research, the basic concept to a practical 
real-time packet filtering scheme using elaborate 
processes is extended. In this method, the PacketScore 
operations for single-point protection is described, but 
the fundamental concept can be extended to a 
distributed implementation for core-routers. 
        To make it more suitable for real-time processing, 
conversion of floating-point division/multiplication 
operations into subtraction/addition operations is 
made.  Scoring a packet is equivalent to looking up the 
scorebooks, e.g., the TTL scorebook, the packet size 
scorebook, the protocol type scorebook, etc. After 
looking up the multiple scorebooks, the matching CLP 
entries in a log-version scorebook are added. This is 
generally faster than multiplying the matching entries in a 
regular scorebook. The small speed improvement from 
converting a multiplication operation into an addition 
operation is particularly useful because every single packet 
must be scored in real-time. This speed improvement 
becomes more beneficial as the number of scorebooks 
increases. On the other hand, generating a log-version 
scorebook may take longer than a regular scorebook 
generation. However, the scorebook is generated only once 
at the end of each period and it is not necessary to observe 
every packet for scorebook generation; thus, some 
processing delay can be allowed. Furthermore, scorebook 
generation can be easily parallelized using two processing 
lines, which allows complete sampling without missing a 
packet. 
      The purpose of a stateless packet filter generator is to 
create a program that, given a finite-length byte sequence (a 
packet) as its input, returns a binary match/mismatch 
decision. The input of the generator itself consists of a set of 
filter rules provided by the user that specify the desired 
properties of matching packets; each rule, in turn, consists 
of multiple predicates expressed in a simple high-level 
language (where header fields and protocols appear 
symbolically), combined together with boolean operators. 
In older generators, the set of supported protocols was 
fixed; in modern ones protocol header formats are kept into 
an external database that can be updated without 
modifying the generator. 

     In order to develop a successful FSA-based filtering 
technique, it is first of all necessary to show that any filter 
of interest can be expressed as a finite automaton, then 
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provide a method to transform a high-level filter statement 
and a protocol database into FSA form. Finally, the 
resulting automaton must be translated into an efficiently 
executable form. 

   A. Protocol Database Compilation 

          The first phase in the SPAF generation process 
consists of parsing the protocol database and building 
template automata that recognize all the correctly 
formatted headers for a given protocol. These automata 
will be reused and specialized in later phases to create the 
final filter. 

      In order to decouple filter generation from the protocol 
database, we have employed an XML-based protocol 
description language (NetPDL [7]) designed to describe the 
on-the-wire structures of network protocols and their 
encapsulation relationships. NetPDL descriptions are 
stored in external files that can be freely edited without 
modifying the generator itself. 

      A precise description of NetPDL is beyond the scope of 
this paper. Nevertheless, we shall provide a quick overview 
of the features supported by the FSA generator. The 
language provides a large number of primitives that enable 
the description of header formats of layer-2–7 protocols, but 
for the scope of this work we have restricted our support to 
those designed for layer-2–4 decoding. The basic building 
block of a protocol format is the header field, a sequence of 
bytes or bits that can be either fixed or variable in size. 
Adjacent fields are by default laid out in sequence, but 
more complex structures such as optional or repeated 
sections can be created using conditional choices and loops; 
these statements are controlled by expressions that can 
contain references to the values of previously encountered 
fields. 
A second NetPDL portion contains a sequence of control 
flow operations (if, switch) that predicate encapsulation 
relationships. In general, the control flow is followed until a 
nextproto tag is encountered, specifying which is the next 
protocol to be found in the packet. A NetPDL database thus 

<protocol  name =”ipv6”> 

     <format> 

          <field> 

<field type=”bit” name = ”ver” mask=”0xF0000000” size 
=”4”/> 

<field type=”bit” name = ”tos” mask=”0x0F000000”size 
=”4”/> 

<field type=”bit” name = ”flabel” mask=”0x00FFFFFF”size 
=”4”/> 

<field type=”fixed” name=”plex”  size =”2”/> 

<field type=”nexthdr” name=”plex”  size =”1”/> 

<field type=”hop” name=”plex”  size =”16”/> 

<field type=”src” name=”plex”  size =”16”/> 

<field type=”dst” name=”plex”  size =”16”/> 

<loop type =”while” expr=”1”> 

<switch expr=”nexthdr”> 

<case value=”0”><includeblk name=”HBH”/></case> 

<case value=”0”><includeblk name=”AH”/></case> 

<default> 

<loopctrl type=”break”/> 
</default> 

     </switch> 
         </loop> 

             </fields> 

               </format> 

<encapsulation> 

<switch expr=”nexthdr”> 

<case value=”4”> <nextproto proto=”#ip”/></case> 

<case value=”4”> <nextproto proto=”#tcp”/></case> 

<case value=”4”> <nextproto proto=”#udp”/></case> 

</switch> 

    </encapsulation> 

         </protocol> 
  
               IPV6 NetPDL excerpt 

     Describes an oriented encapsulation graph where the 
vertices are protocols and the edges are encapsulation 
relationships. Currently, the graph begins with a single 
user-specified root that usually represents the link-layer 
protocol, but an extension to multiple ones would be trivial. 
Starting from this root, the FSA generator follows the 
encapsulation graph and builds a FSA for every reachable 
protocol using the method explained later in this section. 
As an example, a simplified NetPDL description of the IPv6 
header format is presented in Fig. 1. IPv6 starts with a 
sequence of fixed-size fields; bitfields (such as ver) are 
specified by the mask attribute. The initial portion is 
followed by a set of extension headers, each one containing 
a “next header” information (nexthdr). This sequence is of 
unspecified (but implicitly finite, as any packet is finite) 
length, and it is described using a switch nested within a 
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loop: At each iteration, the newly read nexthdr field is 
evaluated, and if no more extension headers are present, 
the loop terminates. Encapsulation relationships are also 
specified in a similar fashion by jumping to the correct 
protocol depending on the value of the last nexthdr 
encountered. SPAF currently supports the full versions of 
the most common layer-2–4 protocols in use nowadays, 
such as Ethernet, MPLS, VLAN, PPPoE, ARP, IPv4, IPv6, 
TCP, UDP, and ICMP; this set can be easily extended as 
long as no stateful capabilities are required. 
An important point regarding FSA creation from NetPDL 
descriptions is that, as long as it is correctly performed, it is 
not be a critical task for filter performance: Any resulting 
automaton ultimately will be determinized and minimized, 
yielding a canonical representation of the filter that does 
not depend on the generation procedure. For this reason, 
and given the complexity involved, the NetPDL-to-FSA 
conversion procedure is not fully described in this paper, 
and it can be regarded as an implementation detail. 
Nevertheless, in order to exemplify how the conversion can 
be done, we report the key steps for translating the NetPDL 
snippets of Fig. 2 into the corresponding automata. 
     The purpose of this initial conversion step is not to 
generate automata immediately suitable for filtering. On 
the contrary, the results are templates for the following 
generation steps, representing the “vanilla” version of 
protocol headers, with no other conditions imposed, to be 
specialized according to the filter rules. Since they are 
strictly related to header format, any inputconsuming 
transition in these templates can be related to a specific 
portion of one3 header field; this information must be 
preserved to accommodate the imposition of filtering rules. 
For this reason, template automata are augmented by 
marking all the relevant transitions with the related field’s 
name.4 The simplest example is generating an automaton 
that parses a fixed-length header field [Fig. 2(a)]: It is 
sufficient to build a FSA that skips an appropriate amount 
of bytes, resulting in Fig. 2(b). During the construction 
process, header fields are given well-defined start and end5 
states that are used as stitching points to join with any 
predecessors or successors by -transitions, as required. A 
more complex example involving a conditional choice is 
shown in Fig. 2(c). The generation procedure starts by 
creating automata representations for all the initial fields in 
the NetPDL description; upon encountering the switch 
construct, however, the generator backtracks the transition 
graph until it encounters the type field. Once found, all the 
states/transitions that follow type (the block in the figure) 
are replicated. The original copy is left as is, while in the 
replica the transitions for type are specialized to recognize 
the bytes of interest for the switch, so the right path will be 
taken depending on the actual input values. Finally, the 
correct trailing block ( or ) is joined in the right place. The 
last example [Fig. 2(e) and (f)] shows the automata 

generated for a header structure similar to the IPv6 
extension headers case. In this case, a loop is interlocked 
with a switch construct, and a greater amount of block 
replication is required to ensure that independent paths 
exist into the automaton for every possible combination of 
the current nexth value (upon which the outcome of the 
switch depends) and the next nexth value, which might 
cause the loop to end. 
      Encapsulation relationships are handled in a similar 
fashion by spawning new paths in the automaton graph 
that end with a special state marked with the protocol that 
should follow. The exact usage of these marked states is 
explained in Section III-D. The generation procedure acts to 
counter the absence of explicit storage locations in the FSA 
model; when it becomes necessary to use the values of 
previously encountered fields for subsequent 
computations, the only solution is to spawn a number of 
parallel branches within the automaton, each one 
associated with a specific value of the field under 
consideration. 
B. Multicast Packet Delivery 

  Here we discuss about packet forwarding to the nodes 

    Packet sending from the source 

         After the multicast tree is constructed, all the 
sources of the group could send packets to the tree 
and the packets will be forwarded along the tree. In 
most tree-based multicast protocols, a data source 
needs to send the packets initially to the root of the 
tree.  
         The source node want send the data to the 
members at that time we perform the security 
action, i.e. whenever the source node want to send 
the data , the source node can encrypt the data by 
using AES (Advanced Encryption Standers) the 
encrypted data can be transferred to the group 
members , in the transmission of packets the 
intermediate nodes want to read the data , if 
suppose the nodes can access the data that time we 
don’t have any problem because the data is in the 
encryption form i.e. cipher text , due to this text the 
intermediate nodes can’t get the data  it can simply 
transfer the data to the destination, in the 
destination side the receiver can decrypt the data 
using AES algorithm.  
For providing the security we use the Advanced 
Encrypted Standards Algorithm  
    The algorithm described by AES is a symmetric-
key algorithm, meaning the same key is used for 
both encrypting and decrypting the data. The 
strength of a 128-bit AES key is roughly equivalent 
to 2600-bits RSA key. AES data encryption is a 
more mathematically efficient and elegant 
cryptographic algorithm the time required to crack 

http://en.wikipedia.org/wiki/Symmetric-key_algorithm
http://en.wikipedia.org/wiki/Symmetric-key_algorithm
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an encryption algorithm is directly related to the 
length of the key used to secure the communication 
(It takes less time). AES allows you to choose a 128-
bit, 192-bit or 256-bit key, making it exponentially 
stronger than the 56-bit key of DES (RSA). The 
algorithm was required to be royalty-free for use 
worldwide .AES has defined three versions, with 
10, 12, and 14 rounds. Each version uses a different 
cipher key size (128,  192, or 256), but the round 
keys are always 128 bits. 
 
    IV. CONCLUSION 

We have designed, prototyped, and evaluated SPAF, a 
packet filter generator based on the creation of finite-state 
automata from a high-level protocol format database and 
filter  redicates. SPAF aims at emitting fast and efficient 
filters while preserving all the relevant safety properties, 
both in terms of memory access correctness and 
termination. The PacketScore scheme is used to defend 
against DDoS attacks. The key concept in PacketScore is the 
Conditional Legitimate Probability (CLP) produced by 
comparison of legitimate traffic and attack traffic 
characteristics, which indicates the likelihood of legitimacy 
of a packet. As a result, packets following a legitimate 
traffic profile have higher scores, while attack packets have 
lower scores. This scheme can tackle never-before-seen 
DDoS attack types by providing a statistics-based adaptive 
differentiation between attack and legitimate packets to 
drive selective packet discarding and overload control at 
high-speed. 
     Thus, PacketScore is capable of blocking all kinds of 
attacks as long as the attackers do not precisely mimic the 
sites’ traffic characteristics. The performance and design 
tradeoffs of the proposed packet scoring scheme in the 
context of a stand-alone implementation is studied. By 
exploiting the measurement/scorebook generation process, 
an attacker may try to mislead PacketScore by changing the 
attack types and/or intensities. We can easily overcome 
such an attempt by using a smaller measurement period to 
track the attack traffic pattern more closely. We are 
currently investigating the generalized implementation of 
PacketScore for core networks.  
     In order to prove this technique on the field, we have 
developed a filter generator that creates filters from an 
external protocol database and user-specified rules. Filter 
DFAs can be used as they are by existing hardware or 
software engines or translated into C code by the back 
end.We also developed an ad hoc DFA execution engine 
that adapts its operations to the word size of the underlying 
machine instead of processing a byte at a time and enforces 
memory safety and termination through run-time fully 
aggregated bound checks. The run-time performance and 
memory occupation of SPAF filters have been evaluated 

both in synthetic and real-world benchmarks. Test results 
show that FSA-based filters perform on a similar or 
improved level as other modern approaches such as BPF+, 
both on simple and complex filters; SPAF filters are also 
shown to scale better with increasing numbers of filtering 
rules. The measured overhead of run-time safety checks is 
small and does not cause any significant penalties both in 
times of run-times (few checks are executed per packet) and 
memory occupation (few checks are inserted per filter). 
Overall, the SPAF approach is an effective and simple way 
to generate packet filters that are easy to compose and 
efficient to run, even with increasing complexity.Among 
the potential problems, a widely known issue affecting 
specifically DFAs is an explosion occurring in the state 
space when treating certain critical patterns; this problem is 
the limiting factor for DFA adoption in other pattern-based 
detectors such as intrusion detection systems 
    The SPAF approach can be easily extended to perform 
packet demultiplexing in addition to packet filtering. This 
is partial  supported by our current generator by labeling 
final states with identifiers of the matching filtering rules; 
full support would require dynamic automata creation and 
code generation, tasks that will be the object of future 
studies. Another future extension to SPAF could be 
enabling interactions (e.g., look-ups and updates) with 
stateful constructs such as session tables, useful for higher-
layer filtering and traffic classification. In conclusion, SPAF 
has been shown as an approach that improves the state of 
the art by generating packet filters that combine most of the 
desired properties in terms of processing speed, memory 
consumption, flexibility and simplicity in specifying 
protocol formats and filtering rules, effective filter 
composition, and low run-time overhead for safety 
enforcement. The development of the filter generator and 
the test results support the viability of our claims.    
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