
International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Secured Data Transmission Using Snort Rules

and Mining Technique
1
Mr.R.venkatramana ,

2
Mrs.M.Sreedevi

Abstract— Network traffic analysis becomes more and more crucial in the IP network infrastructure as the amount of IP packets transmitted

on the Internet at any given moment of time increases enormously. A thorough understanding of the IP traffic will help us better design our

network topology and utilize bandwidth more effectively. From the perspective of security, it can also protect our system from attacks, such as

intrusions, our model employs feature selection so that the binary classifier for each type of attack can be more accurate, which improves the

detection of attacks that occur less frequently in the training data. Based on the accurate binary classifiers, our model applies a new ensemble

approach which aggregates each binary classifier’s decisions for the same input and decides which class is most suitable for a given input.

During this process, the potential bias of certain binary classifier could be alleviated by other binary classifiers’ decision. Our model also

makes use of multi boosting for reducing both variance and bias. The clients have some rules to communicate between them using snort

rules. Any Communications (such as FTP, SMTP, etc) between the clients are monitored by the snort. If it continues again, then that particular

client will be disconnected from this network (means cannot be able to communicate with other clients in that network.) But, that client will be

physically connected with the network. The proposed work describes a network traffic analysis software tool, which provides searching,

visualization, and preprocessing functions with a user-friendly GUI implemented in Java language. Within the huge network traffic data

collected, a user can identify any particular packets using various searching functions provided. Visualization presents the analyzed result in a

different setting to further enhance the analysis. The GUI in Java allows the tool to be used in different platforms. This tool is tested and

demonstrated through several real network datasets.

 Index Terms—Algorithms, filtering algorithms, finite-state automata (FSA), mathematics, packet filters, packet processing, predicate

optimization, protocol description languages (PDLs), run-time safety, snort rules and mining techniques.

I. Introduction

ACKET filters are a class of packet manipulation
programs used to classify network traffic in
accordance to a set of user-provided rules; they are a

basic component of many networking applications such as
shapers, sniffers, demultiplexers, firewalls, and more. The
modern networking scenario imposes many requirements
on packet filters, mainly in terms of processing speed (to
keep up with network line rates) and resource consumption
(to run in constrained environments). Filtering techniques
should also support modern protocol formats that often
include cyclic or repeated structures (e.g., MPLS label
stacks, IPv6 extension headers).
 Finally, it is also crucial that filters preserve the integrity of
their execution environment, both in terms of memory
access safety and termination enforcement, especially when
running as an operating system module or on the bare

hardware. Although at first sight this aspect might not
seem crucial, it is a fact that many of the limitations built
into existing packet filters derive directly from safety
issues. As an example, the impossibility of automatically
proving termination for a generic computer program led
the BPF [1] designers to generate acyclic filters only, thus
preventing the parsing of packets with multiple levels of
encapsulation or repeated field sequences.
 Existing packet filters focus invariably on subsets of
these issues but, to the best of our knowledge, do not solve
all of them at the same time. As an example, two widely
known generators, BPF [2] and PathFinder [3], do not
support recursive encapsulation; NetVM-based filters [4],
on the other hand, have no provision for enforcing
termination, either in filtering code or in the underlying
virtual machine. This paper presents Stateless Packet Filter
(SPAF), a finite-state automata (FSA)-based technique to
generate fast and safe packet filters that are also flexible
enough to fully support most layer-2 to layer-4 protocols,
including optional and variable headers and recursive
encapsulation. The proposed technique specifically targets
the lower layers of the protocol stack and does not directly
apply for deep packet inspection nor for stateful filtering in
general. Moreover, for the purpose of this paper, we
consider only static situations where on-the-fly rule set
updates are not required. While these limitations exclude
some interesting use cases, SPAF filters are nevertheless

P

————————————————

1R.Venkatramana,Research Scholar(M.Tech) Department of CSE
 Madanapalli Institute of Technology and Science, Madanapalli,
Andhra Pradesh, India. Mail: rvramana.r@gmai.com

 2Mrs.M.Sreedevi, Associate Professor Department of CSE
Madanapalli Institute of Technology and Science, Madanapalli,
Andhra Pradesh, India. Mail: srikundu@yahoo.co.in

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

useful for a large class of applications, such as monitoring
and traffic trace filtering, and can serve as the initial stage
for more complex tools such as intrusion detection systems
and firewalls.
 A stateless packet filter can be expressed as a set of
predicates on packet fields, joined by boolean operators;
often these predicates are not completely independent from
one another, and the evaluation of the whole set can be
short-circuited. One of the most important questions in
designing generators for high-performance filters is
therefore how to efficiently organize the predicate set to
reduce the amount of processing required to come to a
match/mismatch decision. By considering packet filtering
as a regular language recognition problem and exploiting
the related mathematical framework to express and
organize predicates as finite-state automata, SPAF achieves
by construction a reduction of the amount of redundancy
along any execution path in the resulting program: Any
packet field is examined at most once. This property
emerges from the model, and it always holds even in cases
that are hard to treat with conventional techniques, such as
large-scale boolean composition. Moreover, thanks to their
simple and regular structure, finite automata also double as
an internal representation directly translatable into an
optimized executable form without requiring a full-blown
compiler. Finally, safety (both in terms of termination and
memory access integrity) can be enforced with very low
run-time overhead.
 The rest of this paper is structured as follows. Section II
presents an overview of the main related filtering
approaches developed to this date. Section III provides a
brief introduction to the FSAs used for filter representation
and describes the filter construction procedure. Section IV
focuses on executable code generation and on enforcing the
formal properties of interest, Finally, Section V reports
conclusions and also highlights possible future
developments.

II. Related Work

 Given their wide adoption and relatively long history,
there is a large corpus of literature on packet filters. A first
class of filters is based on the CFG paradigm; the best-
known and most widely employed one is probably BPF [1],
the Berkeley Packet Filter. BPF filters are created from
protocol escriptions hardcoded in the generator and are
translated into a bytecode listing for a simple, ad hoc virtual
machine. The bytecode was originally interpreted, leading
to a considerable run-time overhead impact that can be
reduced by employing JIT techniques [5]. BPF disallows
backward jumps in filters in order to ensure termination,
thus forgoing support for, e.g., IPv6 extension headers;
memory protection is enforced by checking each access at
run-time. Multiple filter statements can be composed

together by boolean operators, but in the original BPF
implementation, only a small number of optimizations are
performed over predicates, leading to run-time
inefficiencies when dependent or repeated predicates are
evaluated. Two relevant BPF extensions are BPF and xPF.
BPF [2] adds local and global data-flow optimization
algorithms that try to remove redundant operations by
altering the CFG structure. xPF [6] relaxes control flow
restrictions by allowing backward jumps in the filter CFG;
termination is enforced by limiting the maximum number
of executed instructions through a run-time watchdog built
into the interpreter, but its overhead was not measured,
and extending this approach to just-in-time code emission
has not been proposed and might prove difficult.
 Afurther CFG-based approach, unrelated to BPF, is
described in [4]. Its main contribution is decoupling the
protocol database from the filter generator by employing an
XML-based protocol description language, NetPDL [7].
Filtering code is executed on the NetVM [8], a special-
purpose virtual machine targeting network applications
that also provides an optimizing JIT compiler that works
both on filter structure and low-level code. The
introduction of a high-level description language
reportedly does not cause any performance penalties; this
approach, however, delegates all safety considerations to
the VM and does not provide an effective way to compose
multiple filters. In general, CFG-based generators benefit
from their flexible structure that does not impose any
significant restriction on predicate evaluation order; for the
same reason, however, they are prone to the introduction of
hard-to-detect redundancies, leading to multiple
unnecessary evaluations if no further precautions are taken.
Even when optimizers are employed and are
experimentally shown to be useful, they work on an
opportunistic basis and seldom provide any hard
guarantees on the resulting code.
 A second group of filter generators chooses tree-like
structures to organize predicates. PathFinder [3] transforms
predicates into template masks (atoms), ordered into
decision trees. Atoms are then matched through a linear
packet scan until a result is reached. Decision trees enable
an optimization based on merging prefixes that are shared
across multiple filters. PathFinder is shown to work well
both in software and hardware implementations, but it
does not take protocol database decoupling into
consideration, and no solution to memory safety issues is
proposed for the software implementation. FSA-based
filters share a degree of similarity with PathFinder as
packets are also scanned linearly from the beginning to the
end, but predicate organization, filter composition, and
safety considerations are handled differently. DPF [9]
improves over PathFinder by generating machine code just-
in-time and adding low-level optimizations such as a
flexible switch emission strategy. Moreover, DPF is capable

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

of aggregating bounds checks at the atom level by checking
the availability of the highest memory offset to be read
instead of considering each memory access in isolation; our
technique, described in Section IV-E, acts similarly but
considers the filter as a whole, thus further reducing run-
time overhead. While organizing predicates into regular
structures makes it easier to spot redundancies and other
sources of overhead, it also introduces different limitations.
As an example, generators restricted to the aforementioned
acyclic structures do not fully support tunneling or
repeated protocol portions. Moreover, it has been noted
that performing prefix coalescing is not sufficient to catch
certain common patterns, resulting in redundant predicate
evaluation [2].
 A third approach is to consider packet filtering as a
language recognition problem. Jayaram et al. [10] use a
pushdown automaton to perform packet demultiplexing;
filters are expressed as LALR(1) grammars and can
therefore be effectively composed using the appropriate
rules. This solution improves filter scalability, but there are
downsides related to the push-down automaton: A number
of specific optimizations are required to achieve good
performance. It is also quite unwieldy to express protocols
and filter rules as formal grammars that must be kept
strictly unambiguous: The authors marginally note that the
simpler FSA model would be sufficient for the same task.
 Apart from the specialized solutions for fast packet
filtering mentioned, one of the most widely used packet
filtering programs is the NetFilter framework.1 NetFilter is
a component of the Linux kernel that performs packet
filtering, firewalling, mangling operations (e.g., network
address translation), and more, acting through a set of
hooks and callbacks that intercept packets as they traverse
the networking stack. In contrast with all the
aforementioned approaches, NetFilter uses the relatively
simple method of applying all the specified rules in
sequence when performing packet filtering, leading to poor
performance and scalability; moreover, it appears not
possible to specify an arbitrary predicate, filters being
limited to preset protocols and statements that are
specialized by specifying actual network addresses and
ports.
 Besides the generation technique, there have also been
improvements along other dimensions such as architectural
considerations, as demonstrated by xPF, FFPF [19], and
nCap [20], or dynamic rule sets support, as shown by the
SWIFT tool [21]. We consider these aspects out of scope for
the purpose of this paper, being either orthogonal to the
technique we present or the object of future works.

Definition of Near-Duplicate

 The central idea of near-duplicate spam detection
is to exploit reported known spams to block subsequent

ones which have similar content. For different forms of e-
mail representation, the definitions of similarity between
two e-mails are diverse. Unlike most prior works
representing e-mails based mainly on content text, we
investigate representing each e-mail using an HTML tag
sequence, which depicts the layout structure of e-mail, and
look forward to more effectively capturing the near-
duplicate phenomenon of spams.

Let I ¼ ft1; t2; . . . ; ti; . . . ; tn; <mytext=>; <anchor>g be the
set of all valid HTML tags with two types of newly created
tags, <mytext=> and <anchor>, included. An e-mail
abstraction derived from procedure SAG is denoted as <e1;
e2; . . . ; ei; . . . ; em>, which is an ordered list of tags, where
ei 2 I. The definition of near duplicate is: “Two e-mail
abstractions _ ¼ <a1; a2; . . . ; ai; . . . ; an> and _ ¼ <b1; b2; . .
. ; bi; . . . ; bm> are viewed as near-duplicate if 8ai ¼ bi and
n ¼ m.”

The tag length of an e-mail abstraction is defined as the
number of tags in an e-mail abstraction.

The following sequence of operations is performed in the
preprocessing step.
1. Front and rear tags are excluded.
2. Nonempty tags2 that have no corresponding start tags or
end tags are deleted. Besides, mismatched nonempty tags
are also deleted.
3. All empty tags2 are regarded as the same and are
replaced by the newly created <empty=> tag.
Moreover, successive <empty=> tags are pruned and only
one <empty=> tag is retained.
4. The pairs of nonempty tags enclosing nothing are
removed.

Example for Mail

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

SYSTEM ARCHITECTURE

 In the packet filtering process with the increasing
popularity of electronic mail (or e-mail), several people and
companies found it an easy way to distribute a massive
amount of unsolicited messages to a tremendous number of
users at a very low cost. These unwanted bulk messages or
junk emails are called spam messages. The majority of
spam messages that has been reported recently are
unsolicited commercials promoting services and products
including sexual enhancers, cheap drugs and herbal
supplements, health insurance, travel tickets, hotel
reservations, and software products. They can also include
offensive content such pornographic images and can be
used as well for spreading rumors and other fraudulent
advertisements such as make money fast.

 As a result, spam has become an area of growing
concern attracting the attention of many security
researchers and practitioners. In addition to regulations and
legislations, various anti-spam technical solutions have
been proposed and deployed to combat this problem.
Front-end filtering was the most common and easier way to
reject or quarantine spam messages as early as possible at
the receiving server. However most of the early anti-spam
tools were static; for example using a blacklist of known
spammers, a white list of good sources, or a fixed set of
keywords to identify spam messages. Although these list-
based methods can substantially reduce the risk provided
that lists are updated periodically, they fail to scale and to
adapt to spammers’ tactics.

Selective Packet Discarding

Once the score is computed for a packet, selective
packet discarding, and overload control can be performed
using the score as the differentiating metric. Since an exact
prioritization would require offline, multiple-pass
operations, e.g., sorting and packet buffering, the following
alternative approach is taken into account. First, the
cumulative distribution function (CDF) of the scores of all
incoming packets in time period (Ti) is maintained. Second,
the cut-off threshold score is calculated. Third, the arriving
packets in time period T (i+1) if its score value is below the
cut-off threshold are discarded. At the same time, the
packets arriving at T (i+1) create a new CDF.

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Selective packet discarding

Discarding SQL Slammer Worm attack packets

III. Filter Generation Technique

 In this section we describe about filtering
techniques using snort rules and mining
techniques.

One of the key concepts in PacketScore is
the notion of “Conditional Legitimate Probability”
(CLP) based on Bayesian theorem. CLP indicates
the likelihood of a packet being legitimate by
comparing its attribute values with the values in

the baseline profile. Packets are selectively
discarded by comparing the CLP of each packet
with a dynamic threshold. The concept of using a
baseline profile with Bayesian theorem has been
used previously in anomaly-based IDS (Intrusion
Detection System) applications, where the goals are
generally attack detection rather than real-time packet
filtering.
 In this research, the basic concept to a practical
real-time packet filtering scheme using elaborate
processes is extended. In this method, the PacketScore
operations for single-point protection is described, but
the fundamental concept can be extended to a
distributed implementation for core-routers.
 To make it more suitable for real-time processing,
conversion of floating-point division/multiplication
operations into subtraction/addition operations is
made. Scoring a packet is equivalent to looking up the
scorebooks, e.g., the TTL scorebook, the packet size
scorebook, the protocol type scorebook, etc. After
looking up the multiple scorebooks, the matching CLP
entries in a log-version scorebook are added. This is
generally faster than multiplying the matching entries in a
regular scorebook. The small speed improvement from
converting a multiplication operation into an addition
operation is particularly useful because every single packet
must be scored in real-time. This speed improvement
becomes more beneficial as the number of scorebooks
increases. On the other hand, generating a log-version
scorebook may take longer than a regular scorebook
generation. However, the scorebook is generated only once
at the end of each period and it is not necessary to observe
every packet for scorebook generation; thus, some
processing delay can be allowed. Furthermore, scorebook
generation can be easily parallelized using two processing
lines, which allows complete sampling without missing a
packet.
 The purpose of a stateless packet filter generator is to
create a program that, given a finite-length byte sequence (a
packet) as its input, returns a binary match/mismatch
decision. The input of the generator itself consists of a set of
filter rules provided by the user that specify the desired
properties of matching packets; each rule, in turn, consists
of multiple predicates expressed in a simple high-level
language (where header fields and protocols appear
symbolically), combined together with boolean operators.
In older generators, the set of supported protocols was
fixed; in modern ones protocol header formats are kept into
an external database that can be updated without
modifying the generator.

 In order to develop a successful FSA-based filtering
technique, it is first of all necessary to show that any filter
of interest can be expressed as a finite automaton, then

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

provide a method to transform a high-level filter statement
and a protocol database into FSA form. Finally, the
resulting automaton must be translated into an efficiently
executable form.

 A. Protocol Database Compilation

 The first phase in the SPAF generation process
consists of parsing the protocol database and building
template automata that recognize all the correctly
formatted headers for a given protocol. These automata
will be reused and specialized in later phases to create the
final filter.

 In order to decouple filter generation from the protocol
database, we have employed an XML-based protocol
description language (NetPDL [7]) designed to describe the
on-the-wire structures of network protocols and their
encapsulation relationships. NetPDL descriptions are
stored in external files that can be freely edited without
modifying the generator itself.

 A precise description of NetPDL is beyond the scope of
this paper. Nevertheless, we shall provide a quick overview
of the features supported by the FSA generator. The
language provides a large number of primitives that enable
the description of header formats of layer-2–7 protocols, but
for the scope of this work we have restricted our support to
those designed for layer-2–4 decoding. The basic building
block of a protocol format is the header field, a sequence of
bytes or bits that can be either fixed or variable in size.
Adjacent fields are by default laid out in sequence, but
more complex structures such as optional or repeated
sections can be created using conditional choices and loops;
these statements are controlled by expressions that can
contain references to the values of previously encountered
fields.
A second NetPDL portion contains a sequence of control
flow operations (if, switch) that predicate encapsulation
relationships. In general, the control flow is followed until a
nextproto tag is encountered, specifying which is the next
protocol to be found in the packet. A NetPDL database thus

<protocol name =”ipv6”>

 <format>

 <field>

<field type=”bit” name = ”ver” mask=”0xF0000000” size
=”4”/>

<field type=”bit” name = ”tos” mask=”0x0F000000”size
=”4”/>

<field type=”bit” name = ”flabel” mask=”0x00FFFFFF”size
=”4”/>

<field type=”fixed” name=”plex” size =”2”/>

<field type=”nexthdr” name=”plex” size =”1”/>

<field type=”hop” name=”plex” size =”16”/>

<field type=”src” name=”plex” size =”16”/>

<field type=”dst” name=”plex” size =”16”/>

<loop type =”while” expr=”1”>

<switch expr=”nexthdr”>

<case value=”0”><includeblk name=”HBH”/></case>

<case value=”0”><includeblk name=”AH”/></case>

<default>

<loopctrl type=”break”/>
</default>

 </switch>
 </loop>

 </fields>

 </format>

<encapsulation>

<switch expr=”nexthdr”>

<case value=”4”> <nextproto proto=”#ip”/></case>

<case value=”4”> <nextproto proto=”#tcp”/></case>

<case value=”4”> <nextproto proto=”#udp”/></case>

</switch>

 </encapsulation>

 </protocol>

 IPV6 NetPDL excerpt

 Describes an oriented encapsulation graph where the
vertices are protocols and the edges are encapsulation
relationships. Currently, the graph begins with a single
user-specified root that usually represents the link-layer
protocol, but an extension to multiple ones would be trivial.
Starting from this root, the FSA generator follows the
encapsulation graph and builds a FSA for every reachable
protocol using the method explained later in this section.
As an example, a simplified NetPDL description of the IPv6
header format is presented in Fig. 1. IPv6 starts with a
sequence of fixed-size fields; bitfields (such as ver) are
specified by the mask attribute. The initial portion is
followed by a set of extension headers, each one containing
a “next header” information (nexthdr). This sequence is of
unspecified (but implicitly finite, as any packet is finite)
length, and it is described using a switch nested within a

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

loop: At each iteration, the newly read nexthdr field is
evaluated, and if no more extension headers are present,
the loop terminates. Encapsulation relationships are also
specified in a similar fashion by jumping to the correct
protocol depending on the value of the last nexthdr
encountered. SPAF currently supports the full versions of
the most common layer-2–4 protocols in use nowadays,
such as Ethernet, MPLS, VLAN, PPPoE, ARP, IPv4, IPv6,
TCP, UDP, and ICMP; this set can be easily extended as
long as no stateful capabilities are required.
An important point regarding FSA creation from NetPDL
descriptions is that, as long as it is correctly performed, it is
not be a critical task for filter performance: Any resulting
automaton ultimately will be determinized and minimized,
yielding a canonical representation of the filter that does
not depend on the generation procedure. For this reason,
and given the complexity involved, the NetPDL-to-FSA
conversion procedure is not fully described in this paper,
and it can be regarded as an implementation detail.
Nevertheless, in order to exemplify how the conversion can
be done, we report the key steps for translating the NetPDL
snippets of Fig. 2 into the corresponding automata.
 The purpose of this initial conversion step is not to
generate automata immediately suitable for filtering. On
the contrary, the results are templates for the following
generation steps, representing the “vanilla” version of
protocol headers, with no other conditions imposed, to be
specialized according to the filter rules. Since they are
strictly related to header format, any inputconsuming
transition in these templates can be related to a specific
portion of one3 header field; this information must be
preserved to accommodate the imposition of filtering rules.
For this reason, template automata are augmented by
marking all the relevant transitions with the related field’s
name.4 The simplest example is generating an automaton
that parses a fixed-length header field [Fig. 2(a)]: It is
sufficient to build a FSA that skips an appropriate amount
of bytes, resulting in Fig. 2(b). During the construction
process, header fields are given well-defined start and end5
states that are used as stitching points to join with any
predecessors or successors by -transitions, as required. A
more complex example involving a conditional choice is
shown in Fig. 2(c). The generation procedure starts by
creating automata representations for all the initial fields in
the NetPDL description; upon encountering the switch
construct, however, the generator backtracks the transition
graph until it encounters the type field. Once found, all the
states/transitions that follow type (the block in the figure)
are replicated. The original copy is left as is, while in the
replica the transitions for type are specialized to recognize
the bytes of interest for the switch, so the right path will be
taken depending on the actual input values. Finally, the
correct trailing block (or) is joined in the right place. The
last example [Fig. 2(e) and (f)] shows the automata

generated for a header structure similar to the IPv6
extension headers case. In this case, a loop is interlocked
with a switch construct, and a greater amount of block
replication is required to ensure that independent paths
exist into the automaton for every possible combination of
the current nexth value (upon which the outcome of the
switch depends) and the next nexth value, which might
cause the loop to end.
 Encapsulation relationships are handled in a similar
fashion by spawning new paths in the automaton graph
that end with a special state marked with the protocol that
should follow. The exact usage of these marked states is
explained in Section III-D. The generation procedure acts to
counter the absence of explicit storage locations in the FSA
model; when it becomes necessary to use the values of
previously encountered fields for subsequent
computations, the only solution is to spawn a number of
parallel branches within the automaton, each one
associated with a specific value of the field under
consideration.
B. Multicast Packet Delivery

 Here we discuss about packet forwarding to the nodes

 Packet sending from the source

 After the multicast tree is constructed, all the
sources of the group could send packets to the tree
and the packets will be forwarded along the tree. In
most tree-based multicast protocols, a data source
needs to send the packets initially to the root of the
tree.
 The source node want send the data to the
members at that time we perform the security
action, i.e. whenever the source node want to send
the data , the source node can encrypt the data by
using AES (Advanced Encryption Standers) the
encrypted data can be transferred to the group
members , in the transmission of packets the
intermediate nodes want to read the data , if
suppose the nodes can access the data that time we
don’t have any problem because the data is in the
encryption form i.e. cipher text , due to this text the
intermediate nodes can’t get the data it can simply
transfer the data to the destination, in the
destination side the receiver can decrypt the data
using AES algorithm.
For providing the security we use the Advanced
Encrypted Standards Algorithm
 The algorithm described by AES is a symmetric-
key algorithm, meaning the same key is used for
both encrypting and decrypting the data. The
strength of a 128-bit AES key is roughly equivalent
to 2600-bits RSA key. AES data encryption is a
more mathematically efficient and elegant
cryptographic algorithm the time required to crack

http://en.wikipedia.org/wiki/Symmetric-key_algorithm
http://en.wikipedia.org/wiki/Symmetric-key_algorithm

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 8
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

an encryption algorithm is directly related to the
length of the key used to secure the communication
(It takes less time). AES allows you to choose a 128-
bit, 192-bit or 256-bit key, making it exponentially
stronger than the 56-bit key of DES (RSA). The
algorithm was required to be royalty-free for use
worldwide .AES has defined three versions, with
10, 12, and 14 rounds. Each version uses a different
cipher key size (128, 192, or 256), but the round
keys are always 128 bits.

 IV. CONCLUSION

We have designed, prototyped, and evaluated SPAF, a
packet filter generator based on the creation of finite-state
automata from a high-level protocol format database and
filter redicates. SPAF aims at emitting fast and efficient
filters while preserving all the relevant safety properties,
both in terms of memory access correctness and
termination. The PacketScore scheme is used to defend
against DDoS attacks. The key concept in PacketScore is the
Conditional Legitimate Probability (CLP) produced by
comparison of legitimate traffic and attack traffic
characteristics, which indicates the likelihood of legitimacy
of a packet. As a result, packets following a legitimate
traffic profile have higher scores, while attack packets have
lower scores. This scheme can tackle never-before-seen
DDoS attack types by providing a statistics-based adaptive
differentiation between attack and legitimate packets to
drive selective packet discarding and overload control at
high-speed.
 Thus, PacketScore is capable of blocking all kinds of
attacks as long as the attackers do not precisely mimic the
sites’ traffic characteristics. The performance and design
tradeoffs of the proposed packet scoring scheme in the
context of a stand-alone implementation is studied. By
exploiting the measurement/scorebook generation process,
an attacker may try to mislead PacketScore by changing the
attack types and/or intensities. We can easily overcome
such an attempt by using a smaller measurement period to
track the attack traffic pattern more closely. We are
currently investigating the generalized implementation of
PacketScore for core networks.
 In order to prove this technique on the field, we have
developed a filter generator that creates filters from an
external protocol database and user-specified rules. Filter
DFAs can be used as they are by existing hardware or
software engines or translated into C code by the back
end.We also developed an ad hoc DFA execution engine
that adapts its operations to the word size of the underlying
machine instead of processing a byte at a time and enforces
memory safety and termination through run-time fully
aggregated bound checks. The run-time performance and
memory occupation of SPAF filters have been evaluated

both in synthetic and real-world benchmarks. Test results
show that FSA-based filters perform on a similar or
improved level as other modern approaches such as BPF+,
both on simple and complex filters; SPAF filters are also
shown to scale better with increasing numbers of filtering
rules. The measured overhead of run-time safety checks is
small and does not cause any significant penalties both in
times of run-times (few checks are executed per packet) and
memory occupation (few checks are inserted per filter).
Overall, the SPAF approach is an effective and simple way
to generate packet filters that are easy to compose and
efficient to run, even with increasing complexity.Among
the potential problems, a widely known issue affecting
specifically DFAs is an explosion occurring in the state
space when treating certain critical patterns; this problem is
the limiting factor for DFA adoption in other pattern-based
detectors such as intrusion detection systems
 The SPAF approach can be easily extended to perform
packet demultiplexing in addition to packet filtering. This
is partial supported by our current generator by labeling
final states with identifiers of the matching filtering rules;
full support would require dynamic automata creation and
code generation, tasks that will be the object of future
studies. Another future extension to SPAF could be
enabling interactions (e.g., look-ups and updates) with
stateful constructs such as session tables, useful for higher-
layer filtering and traffic classification. In conclusion, SPAF
has been shown as an approach that improves the state of
the art by generating packet filters that combine most of the
desired properties in terms of processing speed, memory
consumption, flexibility and simplicity in specifying
protocol formats and filtering rules, effective filter
composition, and low run-time overhead for safety
enforcement. The development of the filter generator and
the test results support the viability of our claims.

V. References

[1] S. McCanne and V. Jacobson, “The BSD packet filter: A
new architecture for user-level packet capture,” in Proc.
USENIX, 1993, p. 2.

[2] A. Begel, S. McCanne, and S. L. Graham, “BPF�:
Exploiting global data-flow optimization in a generalized
packet filter architecture,” SIGCOMM Comput. Commun.
Rev., vol. 29, no. 4, pp. 123–134, 1999.

[3] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and
P. Sarkar, “PathFinder: A pattern-based packet classifier,”
in Proc. Oper. Syst. Design Implement., 1994, pp. 115–123.

[4] O. Morandi, F. Risso, M. Baldi, and A. Baldini,
“Enabling flexible packet filtering through dynamic code
generation,” in Proc. IEEE ICC, May 2008, pp. 5849–5856.

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 9
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[5] L. Degioanni, M. Baldi, F. Risso, and G. Varenni,
“Profiling and optimization of software-based network-
analysis applications,” in Proc. 15th Symp. Comput. Arch.
High Perform. Comput., Washington, DC, 2003, p. 226.

[6] S. Ioannidis and K. G. Anagnostakis, “xPF: Packet
filtering for lowcost network monitoring,” in Proc. HPSR,
2002, pp. 121–126.

[7] F. Risso and M. Baldi, “NetPDL: An extensible XML-
based language for packet header description,” Comput.
Netw., vol. 50, no. 5, pp. 688–706, 2006.

[8] L. Degioanni, M. Baldi, D. Buffa, F. Risso, F. Stirano, and
G. Varenni, “Network virtual machine (NetVM): A new
architecture for efficient and portable packet processing
applications,” in Proc. 8th Int. Conf. Telecommun., Jun. 15–17,
2005, vol. 1, pp. 163–168.

[9] D. R. Engler and M. F. Kaashoek, “DPF: Fast, flexible
message demultiplexing using dynamic code generation,”
in Proc. ACM SIGCOMM, New York, 1996, pp. 53–59.

[10] M. Jayaram, R. Cytron, D. Schmidt, and G.Varghese,
“Efficient demultiplexing of network packets by automatic
parsing,” in Proc. Workshop Compiler Support Syst. Softw.,
1996.

[11] S. Kumar, J. Turner, and J. Williams, “Advanced
algorithms for fast and scalable deep packet inspection,” in
Proc. ACM ANCS, New York, 2006, pp. 81–92.

[12] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.
Turner, “Algorithms to accelerate multiple regular
expressions matching for deep packet inspection,” in Proc
ACM SIGCOMM, New York, 2006, pp. 339–350.

[13] M. Becchi and P. Crowley, “An improved algorithm to
accelerate regular expression evaluation,” in Proc. ACM
ANCS, New York, 2007, pp. 145–154.

[14] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H.
Katz, “Fast and memory-efficient regular expression
matching for deep packet inspection,” in Proc. ACM ANCS,
New York, 2006, pp. 93–102.

[15] M. Becchi and P. Crowley, “A hybrid finite automaton
for practical deep packet inspection,” in Proc. ACM
CoNEXT, New York, 2007, pp. 1–12.

[16] R. Smith, C. Estan, and S. Jha, “XFA: Faster signature
matching with extended automata,” in Proc. IEEE Symp.
Security Privacy, 2008, pp. 187–201.

[17] M. Becchi, M. Franklin, and P. Crowley, “A workload
for evaluating deep packet inspection architectures,” in
Proc. IEEE Int. Symp. Workload Characterization, Sep. 2008,
pp. 79–89.

[18] T. Hruby, K. van Reeuwijk, and H. Bos, “Ruler: High-
speed packet matching and rewriting on NPUs,” in Proc.
ACM ANCS, New York, 2007, pp. 1–10.

[19] H. Bos, W. D. Bruijn, M. Cristea, T. Nguyen, and G.
Portokalidis, “FFPF: Fairly fast packet filters,” in Proc.
OSDI, 2004, pp. 347–363.

[20] L. Deri, “nCap: Wire-speed packet capture and
transmission,” in Proc. IEEE E2EMON, Washington, DC,
2005, pp. 47–55.

[21] Z. Wu, M. Xie, and H. Wang, “Swift: A fast dynamic
packet filter,” in Proc. 5th USENIX Symp. Netw. Syst. Design
Implement., Berkeley,CA, 2008, pp. 279–292.

